Indian Statistical Institute, Bangalore B. Math (II) Second Semester 2010-11 Semester Examination : Statistics (II) Maximum Score 80

Date: 04-05-2011

Duration: 3 Hours

- 1. There are 8 different eateries in the neighborhood of ISI. An eatery is open on any particular day with probability θ , $0 < \theta < 1$. For reasons of proximity and convenience etc., Partha visits either eatery 1 or eatery 2. Partha is interested in knowing i) $\psi_1(\theta)$, the probability that either eatery 1 is open or eatery 2 is open on any given day and ii) $\psi_2(\theta)$, the probability that exactly one of the eateries 1 and 2 is open on a given day. Let $X_i = 1(0)$ if the *ith* eatery is open (closed) on a given day, $1 \le i \le 8$. Let $X_1, X_2, ..., X_8$ be the random sample taken on some day indicating whether various of the eateries were open or not.
 - (a) State clearly the assumptions you make.
 - (b) Find $\psi_1(\theta)$ and $\psi_2(\theta)$.
 - (c) Show that $T = \sum_{i=1}^{8} X_i$ is a minimal sufficient statistic for θ .
 - (d) Is $T = \sum_{i=1}^{8} X_i$ complete as well? Substantiate.
 - (e) Find Fisher information $I(\theta)$ contained in the sample $X_1, X_2, ..., X_8$ about θ .
 - (f) Find an unbiased estimator for $\psi_2(\theta)$. Hence or otherwise obtain *UMVUE* for $\psi_2(\theta)$.

[2+2+3+4+3+6=20]

2. A drilling machine is used to make holes in metal sheets using shafts of different diametric specifications. Let θ be the mean diameter, measured in mm, of the holes drilled using one such shaft. However, the mean diametric specification θ is unknown. Let $X_1, X_2, ..., X_n$ denote the diameters of n holes all drilled using the given shaft. The variability σ_0^2 , in the diameters of holes drilled, is an indicator of the quality of the drilling machine. Based on the prolonged use of the drilling machine we assume that σ_0^2 is known. Stating clearly the assumptions you make derive likelihood ratio test (LRT) at level of significance $\alpha = 0.05$, for testing the hypothesis

$$H_0: \theta \leq 2 \ versus \ H_1: \theta > 2.$$

How would you report the p - value?

[2+10+2=14]

3. Leaves were randomly collected from *wax-leaf ligustrum* grown in shade. Another random sample was collected from *wax-leaf ligustrum* grown in full sun. The thickness in *micrometers* of the *palisade layer* was recorded for all selected leaves of either type. Thicknesses of 7 sun leaves were reported as:

150, 100, 210, 300, 200, 210 and 300.

Thicknesses of 7 *shade* leaves were reported as:

120, 125, 160, 130, 200, 170 and 200.

- (a) State clearly the assumptions you make.
- (b) Do the two types of leaves differ in thickness? Take $\alpha = 0.05$.
- (c) Report the *p*-value.
- (d) Find 90% confidence interval for (mean thickness of *sun* leaves mean thickness of *shade* leaves).
- (e) Was it crucial to have the two samples of same size for your test?

$$[2+8+2+4+2=18]$$

- 4. Let X_1, X_2, \dots, X_n be a random sample from $N(\theta, \sigma^2)$, both $\theta \in \mathbb{R}$ and $\sigma^2 > 0$ are unknown. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ and $T_n = \frac{\sqrt{n}(\overline{X}_n - \theta_0)}{S_n}, \theta_0 \in \mathbb{R}$ being a known value.
 - (a) Obtain $\hat{\sigma}_n^2$, method of moments estimator for σ^2 .
 - (b) Show that $\hat{\sigma}_n^2$ is asymptotically unbiased for σ^2 .
 - (c) Show that S_n^2 is consistent for σ^2 .
 - (d) Is $\hat{\sigma}_n^2$ consistent for σ^2 ?
 - (e) Show that T_n , the likelihood ratio test statistic for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, is asymptotically normal under H_0 .
 - (f) Obtain Fisher information contained in the sample about σ^2 under H_0 .
 - (g) Show that $Var(S_n^2)$ does not attain *CRLB*, however, S_n^2 is asymptotically efficient.

$$[2+3+4+2+4+4+(4+2)=25]$$

- 5. Suppose we observe $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_n$, all mutually independent random variables such that $Y_i \sim Poisson(\beta\lambda_i)$ and $X_i \sim Poisson(\lambda_i)$; $\beta > 0$ and $\lambda_i > 0$; $1 \le i \le n$. This would model, for instance, the incidence of a disease, Y_i , where underlying rate is a function of on overall effect β and an additional factor λ_i . For example, λ_i could be a measure of population density in locality i, or perhaps health status of the population in the locality i. We do not know λ_i but get information on it through X_i .
 - (a) Obtain maximum likelihood estimators (mle) based on the complete data for β and λ_i ; $1 \le i \le n$.
 - (b) If x_1 is missing calculate the *expected complete-data loglikelihood* and show that the *Expectation-Maximization* (*EM*) sequence is given by

$$\widehat{\beta}^{(r+1)} = \frac{\sum_{i=1}^{n} y_i}{\widehat{\lambda}_1^{(r)} + \sum_{i=2}^{n} x_i}, \ \widehat{\lambda}_1^{(r+1)} = \frac{\widehat{\lambda}_1^{(r)} + y_1}{\widehat{\beta}^{(r+1)} + 1}, \text{ and } \widehat{\lambda}_j^{(r+1)} = \frac{x_j + y_j}{\widehat{\beta}^{(r+1)} + 1}, \ 2 \le j \le n,$$

r being a positive integer.

[4+9=13]